Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

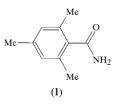
2,4,6-Trimethylbenzamide

Maria Gdaniec,^a* Teresa Olszewska^b and Tadeusz Połoński^b

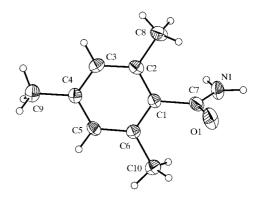
^aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland, and ^bDepartment of Chemistry, Technical University of Gdańsk, 80952 Gdańsk, Poland Correspondence e-mail: magdan@amu.edu.pl

Received 27 October 2003 Accepted 19 November 2003 Online 6 December 2003

The crystal structure of the title compound, $C_{10}H_{13}NO$, displays an infinite one-dimensional network composed of primary amide molecules connected by $N-H\cdots O=C$ hydrogen bonds involving the *anti* NH amide H atoms, thus generating a C(4) motif. This network is additionally stabilized by a weak $N-H\cdots\pi$ interaction between the *syn*-oriented amide H atom and the aromatic ring of a neighbouring molecule. The distance between the H atom and the ring centroid is 2.50 Å. The amide group and the aryl moiety are nearly perpendicular, forming an intramolecular dihedral angle of 84.69 (6)°.

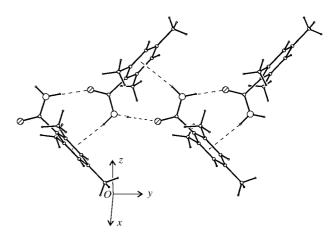

Comment

Hydrogen-bonding interactions between amide H atoms and carbonyl O atoms give rise to a variety of assembly modes in crystals of primary amides (Leiserowitz & Hagler, 1983; Bernstein et al., 1994). The most common modes are the centrosymmetric cyclic $R_2^2(8)$ hydrogen-bond motif, involving the syn-oriented H atoms, H_s (syn with respect to the adjacent C=O bond), and the C(4) hydrogen-bond motif, engaging the anti-oriented H atoms, H_a . Depending on the symmetry operation relating the centrosymmetric dimers along the C(4)chain, one- or two-dimensional hydrogen-bonded arrays can be generated in the solid state. For example, in the case of benzamide (Blake & Small, 1972), o-methylbenzamide (Kato et al., 1979) and m-methylbenzamide (Orii et al., 1963), formation of $N-H_a \cdots O$ hydrogen bonds between the translation-related centrosymmetric $R_2^2(8)$ dimers leads to onedimensional networks. A similar assembly pattern was also observed in crystals of 4-methoxy-2,6-dimethylbenzamide (Mugnoli et al., 1991), whereas neighbouring dimers along the C(4) chain in crystals of *p*-methylbenzamide are related by a glide plane that generates a two-dimensional array of the hydrogen-bonded molecules (Kato et al., 1981).


Recently, it has been shown that introduction of a bulky triphenylmethyl group at the *p*-position of the benzamide molecule leads to crystal structures in which the centrosymmetric amide dimers are connected by weak $N-H_a\cdots\pi$

organic compounds

interactions (Reddy *et al.*, 2002). We report here the crystal structure of 2,4,6-trimethylbenzamide, (I), in which a new assembly mode was found for the aromatic primary amide. This mode is characterized by strong $N-H_a\cdots O$ hydrogen bonds accompanied by weak $N-H_s\cdots \pi$ interactions (π denotes the aromatic ring centroid). A survey of the Cambridge Structural Database (Version 5.24, 296 427 entries; Allen, 2002) gave only three primary benzamide derivatives [HIXNIL (Pandurangi *et al.*, 1998), QELYUB (Zhang *et al.*, 1999) and TUVQIK (Kobayashi *et al.*, 2003)], in which the $H\cdots \pi$ distance and the $N-H\cdots \pi$ angle in the $N-H\cdots \pi$ interactions fall in the ranges 2.0–3.0 Å and 120–180°, respectively.



The structure of (I), with its atom-numbering scheme, is shown in Fig. 1 and selected geometric parameters are given in Table 1. The carboxamide group and benzene moiety are

Figure 1

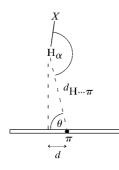

The molecule of (I), with displacement ellipsoids at the 50% probability level for non-H atoms.

Figure 2

A hydrogen-bonded chain in (I), with N-H++O and N-H+++ π interactions shown by dashed lines.

nearly perpendicular to one another, as shown by the dihedral angle between their planes [84.69 (6) $^{\circ}$], whereas the corresponding dihedral angles in 4-methoxy-2,6-dimethylbenzamide (Mugnoli et al., 1991) and 2,4,6-trimethylbenzoic acid (Benghiat & Leiserowitz, 1972) were only 56.7 (1) and 48.7° , respectively. The molecules of (I) are connected by N- $H_a \cdots O = C$ interactions that lead to an infinite one-dimensional network characterized by a C(4) hydrogen-bond motif and extending along the [010] direction (Fig. 2 and Table 2). The amide H_s atoms within this chain are involved in N- $H \cdots \pi$ interactions with the aryl ring of the amide molecules related by the 2_1 axis (Table 2). Malone *et al.* (1997) have analyzed $X - H \cdot \cdot \pi$ interactions in small-molecule crystal structures and indicated six possible forms of interaction between an H atom and an aromatic ring. Interactions classified as type I correspond to classical T-shaped geometry and

Figure 3

Geometric parameters describing the $X-\text{H}\cdots\pi$ interaction according to Malone *et al.* (1997). For a type I interaction, $\text{H}\cdots\pi < 3.05$ Å, α is in the range 150–180°, $\theta > 53^{\circ}$ and d < 0.5 Å.

are characterized by the geometric parameters indicated in Fig. 3. The approach geometry of the N-H_a group to the phenyl ring [with the parameters $H \cdot \cdot \pi = 2.50$ Å, $\alpha = 173^{\circ}$, $\theta = 84^{\circ}$ and d = 0.27 Å] allows us to classify the N-H··· π interaction in (I) as typical type I.

Experimental

The title compound was obtained by reaction of 2,4,6-trimethylbenzoylamide with aqueous ammonia [m.p. 461–462 K (toluene– hexane); literature m.p. 462 K (Hantzsch & Lucas, 1895)].

Crystal data

C ₁₀ H ₁₃ NO	Mo $K\alpha$ radiation
$M_r = 163.21$	Cell parameters from 3457
Orthorhombic, Pbca	reflections
a = 14.2587 (9) Å	$\theta = 4-25^{\circ}$
b = 8.5369 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 14.9245(10) Å	T = 130 (2) K
V = 1816.7 (2) Å ³	Plate, colorless
Z = 8	$0.22 \times 0.15 \times 0.02 \text{ mm}$
$D_x = 1.193 \text{ Mg m}^{-3}$	
Data collection	
Kuma KM-4-CCD κ-geometry	$R_{\rm int} = 0.049$
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
ω scans	$h = -9 \rightarrow 16$
8742 measured reflections	$k = -9 \rightarrow 10$
1597 independent reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.090$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0363P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$
S = 1.03	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
1597 reflections	$\Delta \rho_{\rm min} = -0.18 \mathrm{e} \mathrm{\AA}^{-3}$
122 parameters	
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

01-C7 N1-C7	1.238 (2) 1.331 (2)	C1-C7	1.498 (2)
O1-C7-N1 O1-C7-C1	123.03 (18) 120.50 (17)	N1-C7-C1	116.46 (16)

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1\!-\!H1N\!\cdots\!O1^i$	0.90	1.97	2.868 (2)	177
$N1-H2N\cdots\pi^{ii}$	0.90	2.50	3.393 (18)	173

Symmetry codes: (i) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$.

All H atoms were located from difference maps. Distances involving H atoms were standardized to 0.90 and 0.96 Å for N-H and C-H bonds, respectively. The isotropic displacement parameters were allowed to refine.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2000); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *Stereochemical Workstation Operation Manual* (Siemens, 1989); software used to prepare material for publication: *SHELXL97*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1038). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Benghiat, V. & Leiserowitz, L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 1778– 1785.
- Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlations, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH Publishers.
- Blake, C. C. F. & Small, R. W. H (1972). Acta Cryst. B28, 2201-2206.
- Hantzsch, A. & Lucas, A. (1895). Ber. Dtsch Chem. Ges. 28, 744-753.
- Kato, Y., Oguro, N. & Yagi, K. (1981). Mem. Osaka Kyoiku Univ. Ser. III, 29, 91.
- Kato, Y., Yamazaki, M. & Yokota, M. (1979). Mem. Osaka Kyoiku Univ. Ser. III, 27, 125.
- Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045.

1096 reflections with $I > 2\sigma(I)$

- Leiserowitz, L. & Hagler, A. T. (1983). Proc. R. Soc. London Ser. A, 388, 133– 175.
- Malone, F. J., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.
- Mugnoli, A., Carnasciali, M. M., Sancassan, F., Novi, M. & Petrillo, G. (1991). Acta Cryst. C47, 1916–1919.
- Orii, S., Nakamura, T., Takaki, Y., Sasada, Y. & Kakundo, M. (1963). Bull. Chem. Soc. Jpn, 36, 788–793.
- Oxford Diffraction (2000). CrysAlis CCD and CrystAlis RED. Version 1.163. Oxford Diffraction, Oxfordshire, England.
- Pandurangi, R. S., Katti, K. V., Stillwell, L. & Barnes, C. L. (1998). J. Am. Chem. Soc. 120, 11364–11373.
- Reddy, C. M., Nangia, A., Lam, C.-K. & Mak, T. C. W. (2002). *CrystEngComm*, 4, 323–325.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, S.-W., Kaneko, T., Yoneda, E., Sugioka, T. & Takahashi, S. (1999). Inorg. Chim. Acta, 296, 195–203.